

NATIONAL LEVEL SCIENCE TALENT SEARCH EXAMINATION

CLASS - 9

Question Paper Code : UN497

KEY

1. C	2. D	3. D	4. C	5. C	6. A	7. B	8. A	9. C	10. B
11. D	12. D	13. A	14. B	15. B	16. A	17. C	18. A	19. B	20. В
21. C	22. C	23. C	24. C	25. D	26. B	27. A	28. A	29. C	30. D
31. B	32. D	33. D	34. B	35. C	36. A	37. C	38. A	39. D	40. D
41. D	42. B	43. A	44. A	45. C	46. D	47. D	48. B	49. B	50. C
51. A	52. D	53. B	54. B	55. C	56. A	57. D	58. B	59. C	60. A

SOLUTIONS

MATHEMATICS

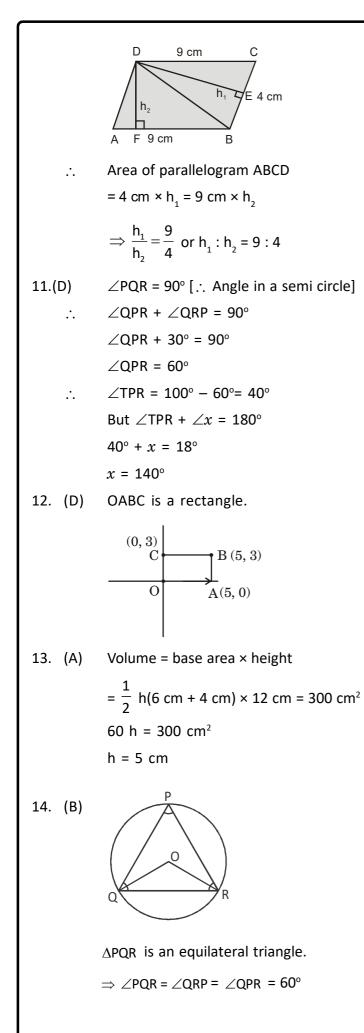
01. (C) Given
$$x^4 + \frac{1}{x^4} = 727$$

Adding '2' on both sides
 $(x^2)^2 + 2 + \frac{1}{(x^2)^2} = 727 + 2$
 $(x^2)^2 + 2x^2 \times \frac{1}{x^2} + \left(\frac{1}{x^2}\right)^2 = 729$
 $\left(x^2 + \frac{1}{x^2}\right)^2 = (27)^2$

$$x^2 + \frac{1}{x^2} = 27$$

Subtractions '2' on both sides

$$x^{2}-2+\frac{1}{x^{2}}=25$$
$$\left(x-\frac{1}{x}\right)^{z}=5^{z}$$


02. (D)
$$\frac{1}{(x^2 - 3x - 28)} - \frac{1}{(2x^2 - 17x + 21)}$$

= $\frac{1}{(x - 7)(x + 4)} - \frac{1}{(x - 7)(2x - 3)}$

$$= \frac{(2x-3)-(x+4)}{(x-7)(x+4)(2x-3)} = \frac{2x-3-x-4}{(x-7)(x+4)(2x-3)}$$

$$= \frac{(x-7)}{(x-7)(x+4)(2x-3)} = \frac{1}{(2x^2+5x-12)}$$
03. (D) Let ABCD be the rectangle with sides 8 cm and 6 cm.

$$A \xrightarrow{4 \text{ cm}} \xrightarrow{6 \text{ cm}}$$

06. (A) $y = 3^x$ (Given) $3^{2x} + 3^{x} \times 3$ $= 3^{x} (3^{x} + 3) = y(y + 3)$ 07. (B) Drop in the height of sand in a cylindrical box = 3 inches Volume of the sand = 1 cu.foot = 1728 cu.inches $\Rightarrow \pi r^2 h = 1728$ [Since 1 foot = 12 inches.] $\Rightarrow \pi r^2(3) = 1728$ \Rightarrow r² = $\frac{576}{\pi}$ \Rightarrow r = $\frac{24}{\sqrt{\pi}}$ inches Diameter of cylinder = 2r $=2\times\frac{24}{\sqrt{\pi}}=\frac{48}{\sqrt{\pi}}$ inches 08. (A) In DBCD, Q and R are the mid-points of BD and CD respectively. D Q \therefore QR || BC and QR = $\frac{1}{2}$ BC Similarly, PS || BC and PS = $\frac{1}{2}$ BC \therefore PS ||QR and PS = QR each equal to $\frac{1}{2}$ BC Similarly PQ || SR and PQ = SR [Each equal to 1/2 AD] [:: AD = BC]*.*.. PS = AR = SR = PQHence, PQRS is a rhombus. 09. (C) Amount = 35 + 15(25) = ₹ 410 10. (B) A diagonal divides a parallelogram into two triangles of equal area.

and $\angle QOR = 2 \angle QPR = 2(60^{\circ}) = 120^{\circ}$ $\therefore \angle QOR = 120^{\circ}$ 15. (B) Const: Extend AD upto E. In DABD, AD = BD $\Rightarrow \angle ABD = \angle BAD = x$ $\therefore \angle BDE = 2x$ Similarly $\angle CDE = 2y$ But \angle BDE + \angle CDE = 100° $\Rightarrow 2x + 2y = 100^{\circ}$ $2(x + y) = 100^{\circ}$ $x + y = 50^{\circ}$ ∴ ∠BAC = 50° R (or) 'D' is the equidistance from the vertices A, B, C 'D' is circumcenter *.*.. $\therefore \qquad \angle BAC = \frac{1}{2} \angle BDC$ $=\frac{1}{2} \times 100^{\circ} = 50^{\circ}$ 16. (A) A median divides the triangle into two triangles of equal area. $\angle PQR = \angle QRT = 65^{\circ}$ 17. (C) [PQ || RT Alternate \angle S] $x = 65^{\circ} - 25^{\circ} = 40^{\circ}$ Since QPS is a triangle, right angled at P we have $y = 180^{\circ} - [90^{\circ} + 40^{\circ}]$ $= 180^{\circ} - 130^{\circ} = 50^{\circ}$

18. (A)
$$(\sqrt{4+\sqrt{15}})^{3} - (\sqrt{4+\sqrt{15}})^{3} = k\sqrt{6}$$

 $[\sqrt{4+\sqrt{15}} - \sqrt{4-\sqrt{15}}]$
 $[(\sqrt{4+\sqrt{15}})^{2} + \sqrt{4+\sqrt{15}} \times \sqrt{4-\sqrt{15}} + (\sqrt{4-\sqrt{15}})^{2}] = k\sqrt{6}$
 $[\sqrt{4+\sqrt{15}} - \sqrt{4-\sqrt{15}}] = k = \sqrt{6}$
 $[\sqrt{4+\sqrt{15}} - \sqrt{4^{2}} - (\sqrt{5-\sqrt{3}})] = k = \sqrt{6}$
 $[\sqrt{5+\sqrt{3}} - (\sqrt{5} - \sqrt{3})] = k\sqrt{6}.$
 $\frac{2\sqrt{3}}{\sqrt{2}} \times 9 = k\sqrt{6}$
 $\sqrt{6} \times 9 = k\sqrt{6}$
 $k = 9$
19. (B) LHS
 $(2019^{2} - 2019 - 6) (2019^{2} + 4038 - 3)(2019 + 1)$
 $(2019 - 3) (2019 - 1) (2019 + 2) (2019 + 3)$
Let 2019 = x
 $= \frac{(x^{2} - x - 6) (x^{2} + 2x - 3) (x + 1)}{(x - 3) (x - 1) (x + 2) (x + 3)}$
Let 2019 = x
 $= \frac{(x - 3) (x + 2) (x + 3) (x - 1) (x + 1)}{(x - 3) (x - 1) (x + 2) (x + 3)}$
 $= x + 1$
 $= 2020$
20. (B) Const: Extand GH Up to 5
 $\angle AIH = 70^{\circ} [\because corresponding angles]$
 $\therefore \angle AIJ = 180^{\circ} - 70^{\circ} = 110^{\circ}$
 $\Rightarrow \angle IKL = \angle AIJ = 110^{\circ}$
 $[\because corresponding angles]$
 $\angle IKH = \angle HKI + \angle IKL = 25^{\circ} + 110^{\circ} = 135^{\circ}$
 $= \sqrt{27}$

$$= \sqrt{270 \times 20 \times 100 \times 150}$$

$$= \sqrt{30 \times 9 \times 20 \times 55 \times 530}$$

$$= 30 \times 3 \times 20 \times 5$$

$$= 9000 \text{ m}^{2}$$
24. (c) $3^{2} = a$

$$\Rightarrow 3^{2} = (3^{2})^{2} = a^{2}$$

$$\therefore a^{2} + 9 = 10a$$
 $a^{2} - 10a + 9 = 0$
 $a^{2} - 9a - a + 9 = 0$
 $a(a - 9) - 1(a - 9) = 0$
 $(a - 9) - 1(a - 9) = 0$
 $a = 9$ (or) $a = 1$
 $3^{2} = 9$ $3^{2} = 1$
 $3^{2} = 3^{2}$ $3^{2} = 3^{2}$
(A) Using Newton's 2nd law, acceleration of $car = \frac{F}{m} = \frac{3600 - 2000}{800} = 2.0 \text{ m/s}^{2}$
25. (d) $\int_{B} \frac{1}{M} \int_{C} C$
AB = 7.2 cm, BC = 4.8 cm, CL = 4 cm
Area of $AABC = \frac{1}{2} \times BC \times AM = \frac{1}{2} \times AB \times CL$
 $= \frac{1}{2} \times 4.8 \times AM = \frac{1}{2} \times 7.2 \times 4$
 $\Rightarrow AM = \frac{7.2 \times 4}{4.8} = 6 \text{ cm}$
24. (d) When a bus accelerates forward from rest, the passengers in the bus lean back due to therin that larts in the opposite direction.

earth = 10 × 10 =

speed increases

energy.

the process,

= 1800 + 1200 +

the bus lean back

31. (B)	The work done by the car is equal to the gain in gravitational potential energy of the car up the hill.	3
	∴ Work done = mgh	
	= 500 × 10 × 10 = 50000 j = 5 × 10 ⁴ J	
	Note: The distance along the slope is not required in this calculation.	3
32. (D)	Net displacement = $\sqrt{6^2 + 8^2}$ = 10 km	
	Total distance travelled = 6 + 8 = 14 km	
	Total time taken = 2 h	
	Average Speed =	
	$\frac{\text{Total distance travelled}}{\text{Total time taken}} = \frac{14 \text{ km}}{2 \text{ h}}$	
	= 7 km h ⁻¹	
	Average Velocity =	
	$\frac{\text{Total displacement}}{\text{Total time taken}} = \frac{10 \text{ km}}{2 \text{ h}}$	
	= 5 km h ⁻¹	
33. (D)	All the given safety measures used in vehicles help to reduce the negative effects of inertia of people travelling in various vehicles.	
34. (B)	A guitar string has stored potential energy. When a guitar string is plucked, potential energy is converted into kinetic energy (vibration) and sound energy which we hear.	3
35. (C)	A solid object of higher density than the liquid will sink and of lower density than the liquid will float.	
	R.D of liquid 1 = 0.75	
	R.D of liquid $2 = 0.1$	
	R.D of object P = 0.6	
	R.D of object Q = 0.9	
	Solid Object P has R.D. less than both the liquids 1 and 2 respectively. So, it will float in both the liquids.	3
	Solid Object Q has R.D more than liquied 1, So, it will sink in liquid 1	
	Solid Object Q has R.D less than liquid 2, So, it will float in liquid 2	
		I

CHEMISTRY

- 36. (A) 12 g of carbon combines with 32 g of oxygen to form 44g of CO₂. It is an example of Law of Conservation of Mass.
- 37. (C) Mercury-ethanol is an immiscible liquid mixture. Hence, it can be separated by a separating funnel.
 - (i) Filter paper is used to separate solid particles from a liquid.
 - (ii) Distillation is the process of heating a liquid to form vapour, and then cooling the vapour to get back the liquid e.g., salt water. Both salt and water can be recovered by this process.
 - (iii) Fractional distillation is the process of separating two or more miscible liquids based on the difference in their boiling points. Mercury-ethanol is an immiscible liquid mixture which cannot be separated either by distillation or fractional distillation.
 - (iv) A centrifuge works on the principle of sedimentation in which lighter particles float and heavier particle settle at the bottom.

$$\Rightarrow$$
 1 g of glucose = $\frac{1}{180}$ moles.

$$\therefore$$
 5.23 g of glucose = $\frac{1}{180} \times 5.23$ moles.

1 mole contains 6.023×10^{23} molecules

Number of molecules present in 5.23 of glucose

$$= \frac{1}{180} \times 5.23 \times 6.023 \times 10^{23} = 0.175 \times 10^{23} \text{ or } 1.75 \times 10^{22} \text{ molecules.}$$

39. (D) Elements X and Y combine to form a compound Z. X and Y being elements cannot be broken down into simpler substances. Compound Z has a fixed composition.

- 40. (D) There are spaces between the particles of water and alcohol. When they are mixed together, the water and alcohol particles move into these spaces. This causes the final volume to be less than 100 ml.
- 41. (D) Molecules of phosphorus (P_4) and ammonia (NH_3) are tetra-atomic.
- 42. (B) Three elements are present in AgNO₃. Ag-silver, N-nitrogen and O-oxygen.
- 43. (A) Carbon compound $\xrightarrow{\text{Combustion}} \text{CO}_2 + \text{H}_2\text{O}$

Gram molecular weight of $CO_2 = 44$ g 44 g of CO_2 contains 12 g of 'C'

% of carbon = $\frac{0.361 \times 12 \times 100}{0.202 \times 44}$ = 48.74%

- 44. (A) Sample P contains both red and green dyes as per the chromatogram shown.
- 45. (C) The perfume molecules travel only short distances in straight lines before they collide with another molecule, change direction to collide again and so on. Infact at room temperature and atmospheric pressure, a perfume (gas) molecule in the air experiences several billion collisions per second. As the room is very large, slow diffusion occurs and perfume molecules travel in haphazard paths. So, it takes several minutes before its smell can be detected at the other end.

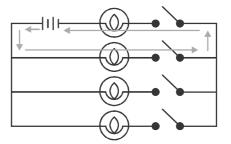
BIOLOGY

- 46. (D) Cell membrane is composed mainly of proteins and lipids. It aids in maintaining homeostasis in the cell. Plama membrane is the outer covering of cell made up of the phospholipid bilayer. Chemically, cell membrane or plasma membrane is composed of proteins (20–70%), lipids (20, 79%), carbohydrates (1–5%), and water (20%). Nucleic acids, i.e., DNA and RNA are absent. Hence, in cell membrane carbohydrates are present in least proportion.
- 47. (D) The integumentary system performs many intricate functions such as regulation of body temperature, cell fluid maintenance, synthesis of Vitamin D, and responds to stimuli. A circulatory system helps to provide oxygen, nutrients, and hormones to muscles.
- 48. (B) Intercropping is a systematic modification of mixed cropping. Intercropping allows different crops to be harvested and threshold separately. Crop rotations make soil fertile. In mixed cropping, crops are planted in a fixed pattern.
- 49. (B) The disease caused by bacteria are diptheria, leprosy, plague.
- 50. (C) The adipose tissue stores fat in human body.
- 51. (A) If the sebaceous glands fail to function, the skin will become rough and dry.
- 52. (D) Lysosome is the cell organelle responsible for autolysis.
- 53. (B) P (ii); Q (iii); R (iv); S (i)

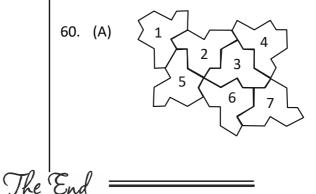
P : Saprophyte - Decomposition of dead organic materials.

Q : Parasite - Living on living plants or animals.

R : Lichens - Symbiotic association of algae and fungi


S : Mycorrhiza - Symbiotic association of fungi with roots of higher plants.

- 54. (B) Seaweeds are rich sources of iodine. Seaweeds are also rich in minerals such as calcium, sodium, magnesium, potassium, iron, zinc, copper. Seaweeds also provide fibres, vitamins, enzyme and high quality protein.
- 55. (C) Endoplasmic reticulum is a cell organelle which is composed of a series of channels throughout the cytoplasm that functions in the transport of the cytoplasm that function sin the transport of molecules. A cell wall protects the structure of cell. Lysosomes digest cell parts while chloroplasts help in photosynthesis.


CRITICAL THINKING

- 57. (D) Conclusion (1) and Conclusion (2) both are True
- 58. (B) To form a simple circuit, two switches need to be closed to let the current run.

59. (C) The situation demands that the education system should be more flexible and should be revised periodically.

